
In a nutshell: Neumann and insulated boundary conditions 

Given a second order linear ordinary differential equation with constant coefficients 

a2(x)u(2)(x) + a1(x)u(1)(x) + a0(x)u (x) = g(x), 

two spatial boundary points [a, b] and two boundary conditions: either Dirichlett, u(a) = ua and u(b) = ub; or Neumann: 

u(1)(a) = ua
(1) and u(1)(b) = ub

(1). Recall that if a constant has a derivative, that indicates that the constant represents a 

slope; it does not suggest we are taking the derivative of that constant. An insulated boundary condition is when we 

have a Neumann condition and the derivative is set to zero. 

Parameters: 

 n The number of sub-intervals into which [a, b] will be divided. 

1. Set 
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2. For k going from 1 to n – 1, assign the following:  
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If the linear ordinary differential equation has constant coefficients, all p, q and r values are equal to each 

other. 

3. Create the system of n – 1 linear equations in n – 1 unknowns 
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4. We modify the matrix A and the vector g as follows: 

a. If the left-hand boundary condition is a Dirichlet condition, update 1 1 1 ag g p u  ; 

b. otherwise, the left-hand boundary condition is a Neumann condition, so update: 
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c. If the right-hand boundary condition is a Dirichlet condition, update 1 1 1n n n bg g r u    ; 

 

d. otherwise, the right-hand boundary condition is a Neumann condition, so update: 
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Note that the right-hand vector g is not updated for insulated boundary conditions. 

5. Solve the updated system of linear equations Au = g. 

6. The approximation of u(xk) is uk for k = 1, …, n – 1; and 

a. If the left-hand boundary condition is Dirichlet, u(x0) = u(a) = ua; 

b. otherwise, the left-hand boundary condition is Neumman, so 
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c. If the right-hand boundary condition is Dirichlet, u(xn) = u(b) = ub; 

d. otherwise, the right-hand boundary condition is Neumann, so 
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